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Abstract

This article focuses on the causal impact of forest fire smoke on motor vehicle collisions
in the contiguous Western United States. To evaluate this effect, I merged daily wildfire
smoke exposure data with the number of car crashes for all counties in the American
West. My detailed findings demonstrate the negative impact of smoke on road accidents.
I document that a smoke day increases the number of deadly collisions by a 7.1 percent
compared to a day without smoke plumes. The adverse effect is mostly observable in the
metropolitan areas and adds $3.7 billion or roughly 0.9 percent in estimated losses from
car fatalities annually within the entire United States.
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1 Introduction

Motor vehicle traffic accidents lead to tens-of-thousands of fatalities annually and are the second

largest cause of accidental deaths among individuals below 45 years old in the United States1.

Recent estimates indicate tremendous annual societal costs of these crashes totaling $1.4 trillion

in 2019, with approximately $412 billion of this cost from fatalities (Blincoe et al., 2023). A

deeper understanding of their determinants could help policymakers determine how to best

enhance road safety and reduce the enormous costs associated with severe accidents.

One important determinant of deadly traffic collisions is hazardous air quality. Studies show

that ambient air pollution can have a detrimental impact on road safety but may also induce more

cautious driving. Contaminated air causes cognitive impairment, which in turn limits driving

performance and can increase accidents (Mackenzie and Harris, 2017; Sager, 2019; Zhang et al.,

2023). The adverse impact of pollution on cognitive abilities can include heightened aggressive

behaviour (Schikowski and Altuğ, 2020; Burton and Roach, 2023). Finally, air pollution can

worsen road safety by limiting visibility (Intini et al., 2022). However, all of these negative

impacts could be mitigated by visibly elevated levels of air pollution inducing more careful

driving and/or encouraging some drivers to refrain from non-essential trips (Singh et al., 2021;

Shr et al., 2023). As a result, the overall effect of adverse air quality on road safety is uncertain

and is likely to vary with the intensity of pollution.

Wildfires are increasingly key contributors to dangerous levels of pollution in the Western

United States (American Lung Association, 2024). Smoke plumes from fires are known to

travel thousands of miles away from their origins (Miller et al., 2017). In certain regions, such

as the western half of the United States, wildfire smoke has significantly slowed multi-decadal

progress in ambient air quality improvements in the United States (Burke et al., 2023).

In this paper, I estimate the causal impact of wildfire smoke on road safety in the contiguous

Western Unites States2. I combine daily counts of fatal injuries sustained in motor vehicle

traffic collisions from the Fatality Analysis Reporting System (FARS) from 2011 to 2015 with

1The associated chart and data could be found here: https://www.cdc.gov/injury/wisqars/

animated-leading-causes.html.
2In this study, I consider the following twelve states: Arizona, California, Colorado, Idaho, Montana, Nevada,

New Mexico, Oregon, Texas, Utah, Washington, and Wyoming.
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satellite-derived wildfire smoke plume images available through the National Oceanic and

Atmospheric Administration’s (NOAA) Hazard Mapping System (HMS). The latter data is

used to compute several measures of forest fire smoke presence and intensity within counties

in the American West. I estimate the effect of various levels of smoke pollution on fatal car

accidents using a two-way fixed effects specification that accounts for time-invariant unobserved

county characteristics and common temporal shocks, as well as controls for other important

determinants of road safety such as daily weather conditions.

I find that exposure to wildfire smoke on a given day increases the number of fatalities in

a county by 0.003, which corresponds to a roughly 7.1 percent increase relative to the average

number of daily road fatalities within a county in my sample. These magnitudes imply that

wildfire smoke causes an extra 292 road fatalities each year, which translates into additional

$3.7 billion in estimated losses within the United States annually.

This article contributes to the literature in several important ways. First, estimating the causal

impact of air pollution on traffic fatalities is difficult in most contexts because of reverse causality

and unobserved confounders that may be correlated with exposure and traffic outcomes. As

an example, increases in traffic volume will increase pollution but also could increase the risk

of accidents occurring. Moreover, changes in local economic activity can have direct causal

impacts on air quality. Variation in air quality due to wildfire smoke is plausibly exogenous

given wind can move large distances away from the source locations, generating a set of far-

reaching and lasting air quality shocks unrelated to local activity (Sokolik et al., 2019). These

characteristics make smoke a useful natural experiment that can be used to better understand

the causal impact of air pollution on road safety.

Second, existing studies linking contaminated air to road safety outcomes report mixed

results. On one hand, air pollution is associated with lower visibility, worse driving behaviour,

cognitive impairment, all which lead to increases in fatal accidents (Sager, 2019; Shi et al.,

2022). On the other hand, high air pollution levels encourage cautious driving or road avoidance

altogether (Shr et al., 2023). Likely due to these competing mechanisms, some studies fail to find

any significant impact of air quality on road safety (Dastoorpoor et al., 2016). A recent paper

examining the relationship between poor air quality and fatal vehicle collisions in California finds
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adverse effects of air pollution on road safety that are mitigated by driver risk aversion (Braun

and Villas-Boas, 2024). Variation in the visibility/density of pollution is critical to understand

the role of these competing mechanisms which I am able to measure using geo-specific smoke

plume intensity data captured by the NOAA satellites.

Third, studies investigating the impact of poor air quality often focus on a few chosen

pollutants, such as ozone, particulate matter, or nitrogen oxides (Maji et al., 2023). However,

the toxic potency of a pollutant varies by its sources. Wildfires generate a great deal of fine and

ultrafine particles which penetrate into the lungs and are transported through the bloodstream

which have both short- and long-term health consequences (Aguilera et al., 2021; Zhang et al.,

2024). Wildfire smoke plumes also contain other harmful types of pollutants that are frequently

omitted in single class pollutant research articles, such as methane, benzene, carbon monoxide

and volatile organic compounds (Simmons et al., 2022). But even when individual measures of

each air contaminant are readily available, multiple pollutant studies are unable to account for

the potential interaction effects between contaminant mixtures, which can exacerbate the health

impacts (Yu et al., 2022). All of the contaminants present in fire smoke could potentially amplify

health consequences through their chemical interactions3 (Mainka and Żak, 2022; Liu et al.,

2023). Because of these complex relationships between fire smoke and individual contaminants,

I focus on measures of smoke presence and intensity since this variation encompasses the diverse

set of pollutants.

Finally, a body of literature focuses on the direct effect of big wildfires or other extreme

weather events by estimating their economic and health impacts on nearby communities (Kizer,

2020; Kim et al., 2021). While large fires can be detrimental to specific communities, few

studies consider the broader impact of air pollution shocks from the drifting smoke plumes.

Even prescribed fires can result in large concentrations of particulate matter in the air and

adversely affect downwind communities (Jones et al., 2022; Baryshnikova and Wesselbaum,

2023). I use the entire set of fire smoke plumes to provide the most comprehensive study to

date with regards to their impacts on road safety.

The rest of the paper is structured as follows. Section 2 outlines data sources. Section

3For example, the exposure to PM2.5 or NO2, adjusted for the other pollutant, demonstrates a synergistic effect
considering mortality from respiratory diseases.
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3 describes the empirical strategy. Section 4 discusses main results, assesses heterogeneous

effects, and tests the robustness of my findings. Section 5 provides concluding remarks.

2 Data Sources

2.1 Motor Vehicle Fatalities Data

I use publicly available data tracking fatal injuries suffered in vehicle accidents provided by

the Fatality Analysis Reporting System (FARS) in the United States from 2011 to 2015. I

focus on the months of March through November since there is very little variation in smoke

plume coverage during winter months. The FARS data contains extensive details about all fatal

accidents including specific information about each collision, such as the date it occurred, its

location, the number of people and vehicles involved, and whether alcohol or other substances

were involved. I geocode the location of each accident to the county of occurrence.

2.2 Smoke Plumes and Air Quality Data

The satellite tracking of wildfire smoke plumes is administered by NOAA’s Hazard Mapping

System (HMS). Smoke experts perform input data quality checks and transform the incoming

forest fire smoke identifications into a digital map depicting the expanse of the wildfire smoke

and its intensity each day. I use this dataset to calculate the daily smoke coverage and intensity

values for each county in the sample. One limitation of this data is that there are no details

provided about the elevation of smoke clouds. While smoke plumes higher in the atmosphere

may overstate the true exposure at the ground level, several studies document a strong link

between fire smoke plume locations and data from air pollution monitors on the ground (Hung

et al., 2020; O’Dell et al., 2021; Burke et al., 2023). To establish this connection in my

context, I provide estimates of the relationship between my county-level smoke plume data and

daily county-level air quality index (AQI) data available from the Unites States Environmental

Protection Agency (EPA)4.

4The EPA dataset includes information for approximately 40 percent of county-by-date entries constructed
from the FARS data. While the AQI data provides sufficient number of data points for a reasonable examination on
the relationship between forest fire smoke and ground-based air pollution, it severely limits the ability to employ
instrumental variable approach in this article.
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2.3 Other Data

Weather conditions could directly influence deadly road accidents as well as affecting the

presence of smoke. As a result, I gather detailed weather information prepared by the NOAA’s

Climate Data Online database to control for the influence of weather on my outcomes of interest.

In my primary specification, I control for average daily temperatures and precipitation amounts

for each county in the sample over the analysis period. Importantly, the smoke data depicts the

spatial distribution of smoke plumes during the day implying that wind patterns are embedded

in this data5. My data is further supplemented by the county-level Rural-Urban Continuum

Codes managed by the U.S. Department of Agriculture which classifies each county into one of

the three categories – a metropolitan, urban, or rural area.

3 Research Methodology

3.1 Forest Fire Smoke Exposure

I use daily variation in the exposure to wildfire smoke across all counties in the American West

to examine the causal impact of air pollution events on the number of motor vehicle fatalities.

Smoke plumes can drift thousands of miles downwind, naturally separating the effects of

smoke exposure from the direct devastation caused by burning fires. Figure 1 illustrates annual

frequency and spatial allocation of smoke shocks in my analysis sample. The average county

experiences more than a full month of smoke days in a year but this can vary significantly across

years. There is also substantial variation across the counties in these Western US States.

The fraction of the area of a representative county that is covered by any smoke plumes is

0.1231 on a typical day in my analysis dataset as outlined in Table 1. In general, heavier smoke

episodes occur less frequently than lighter ones. With regard to the number of crashes, there

are 0.0385 accidents observed in an average county each day in the estimation sample.

To establish the effect of these smoke plumes on traditional air quality measurements from

5Other factors like fog can negatively affect road safety but I am unable to obtain daily historical data tracking
these conditions. However, given the fact that fog is typically densest in the early morning when traffic is calm and
small influence of other weather conditions on my results, I do not expect the inclusion of more detailed weather
data to have a significant impact on my estimates.
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ground-based air quality monitors, I regress6 daily air quality index measures on my measures

of smoke plume intensity. Column 1 of Table 2 demonstrates that a smoky day is associated

with an elevated AQI (worse air quality) on that day. Moreover, heavier smoke intensities are

associated with larger increases in AQI demonstrating a dose-response relationship between my

smoke intensity measure and ground-based air quality measures.

3.2 Empirical Design

My research approach leverages daily variation in wildfire smoke coverage across all counties

in the contiguous Western United States to estimate the causal impact of smoke on road safety

during the months of March through November from 2011 through 2015 using the following

regression equation:

Ycd = β · Smokecd +Xcdγ + αc + αd + εcd (1)

The dependent variable, Ycd, denotes the number of fatalities in county c on day d. The main

independent variable, Smokecd, measures the fraction of the area of county c that is covered

with smoke plumes on a day. In same specifications, I decompose this measure into the three

smoke intensity classifications that are available in the data – low, medium, and heavy smoke.

Xcd is a vector of controls for weather patterns, such as temperature and precipitation, to account

for potential correlation with wildfire smoke and direct influence of weather on road safety. The

main specification also includes county fixed effects, αc, to account for unobservable differences

between geographic units, and date fixed effects, αd, that capture region-wide time-invariant

daily patterns such as activity level differences by day-of-the-week. All models cluster standard

errors at the county level.

For my key coefficient of interest, β, to represent the causal effect of an additional smoke

day on the number of traffic fatalities, the variation in my measure of smoke days must be

uncorrelated with unobserved determinants of fatalities after conditioning on control variables

Xcd and time-invariant county and date characteristics captured by αc and αd. Xcd controls

for factors that vary within counties and are likely related to the presence of smoke (e.g.

6The regression also includes county together with day fixed effects and consistent with variation used in
equation 1 below.
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temperature and precipitation). The stability of my estimated impacts across specifications with

or without controls, along with a placebo check estimating the impact of future smoke days on

contemporaneous outcomes, help to support my causal identification assumption in this setting.

4 Results

4.1 Main Findings

The primary results from estimating equation 1 are reported in Table 2. As observable in column

2 of Panel A, I find that a day with full smoke coverage increases the number of fatalities per

county per day by 0.003 compared to a smoke-free day. This represents a rise of 7.1 percent

relative to the mean number of deadly car accidents, and corresponds to 292 additional lethal

collisions annually nationwide7. Panel B demonstrates the detailed breakdown of forest fire

smoke effects on the number of fatalities for the three available smoke intensities. The heaviest

smoke is unsurprisingly the most dangerous type, yet it is a rare event as observable in Table 1.

Importantly, low intensity smoke, which is most prevalent and typically invisible to human eyes,

still has statistically and economically significant adverse impact on driving conditions.

Next, I test whether smoke exposure has any longer-term or lagged effects at the daily level

(column 3) or weekly aggregates (column 4). The specific choice of lags is motivated by

some research that finds that the impact of air pollution on outdoor activities and driving can

potentially last for a few days (Graff Zivin and Neidell, 2009; Shi et al., 2022). Interestingly, the

negative impacts of smoke are concentrated on the specific day of exposure with no evidence of

effects persisting in the next day or the next week. These patterns suggest that any relationship

between exposure and persistent cognitive impacts is not detectable in traffic fatalities.

I also estimate my primary specification using alternative outcome measures and report

these results in Table 3. Effects on the number of fatal crashes or the number of motor vehicles

involved are very similar to my estimates using the number of individual fatalities. The baseline

effect of a smoke day in a county corresponds to an increase of 6.8 and 7.6 percent, respectively,

7To describe findings at the national level, I implicitly assume that the results from the western states are
representative of those from the entire country. Given the annual average number of deadly episodes in the United
States of 33,476 over the analysis period, combined with the average number of daily smoke (0.1231), and using
the estimated 7.1 percent increase in fatal motor vehicle victims due to forest fire smoke presence, the smoke
exposure contributes to the growth in lethal outcomes from collisions of 292 each year or 0.8 per day.
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relative to the means of these outcomes. A smoke day increases the total number of people

involved in lethal collisions by around 6 percent relative to the mean (column 3 of Table 3).

Finally, the number of deadly accidents involving drunk drivers rises by around 9 percent relative

to the mean on a smoke day, possibly due to the interaction of reduced cognitive abilities from

intoxication and the impacts of the pollution (Han and Jia, 2022). In other words, smoke may

exacerbate the dangers associated with driving under the influence.

4.2 Heterogeneous Results

To further understand the link between smoke plumes and road safety, I explore how effects vary

by the type of county and the specific day of the week. This exercise illustrates the conditions

under which road safety is most sensitive to pollution events. Specifically, I evaluate whether

effects are similar across counties designated as metropolitan, urban, or rural; and whether

effects are similar on weekdays versus weekends.

The results of this exercise are presented in Table 4. Columns 1 through 3 highlight that

the underlying detrimental effect of smoke is predominantly concentrated in metropolitan areas

with little impact in less populated counties. Metropolitan areas have denser traffic patterns

which could imply that driving errors are more likely to result in fatal accidents.

I find relatively similar impacts of smoke on weekdays and weekends, yielding a 6.6 percent

and a 7.6 percent increase in lethal motor vehicle crashes, respectively (columns 4 and 5).

However, it is worth noting that I estimate a materially larger impact of heavy smoke during the

weekends (column 5, Panel B). An intense smoke day increases the number of fatalities by a

23 percent, which is more than triple the effect on weekdays. Since impaired driving is one of

the top contributors to lethal vehicle accidents (Romano and Pollini, 2013), this effect could be

linked with the increased alcohol and other recreational drug consumption over the weekends

(Lau-Barraco et al., 2016; Buckner et al., 2019) compounding the negative impacts of pollution.

4.3 Robustness of Results

I evaluate the robustness of my results to alternative specifications and present results from

a placebo specification in Table 5. It is possible that the main effect of smoke described in

the paper is driven by other general trends, such as the possibility of areas experiencing more
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smoke days also experiencing higher growth in the numbers of drivers. I construct an outcome

variable that represents a fatality rate by dividing the number of fatalities by the number of

cars registered (I scale by 6 million registrations in the respective state to obtain an outcome

mean similar to that used in my baseline dependent variable for comparison). As shown in

column 2, the estimated impact of a smoke day in this specification is indistinguishable from

the baseline. I also check whether results are similar in a population-weighted specification.

Column 3 emphasizes that the wildfire smoke impact contributes to a generally comparable 5

percent increase8 in tragic accidents under the population-weighted model. Another possible

concern is the choice of a linear regression model, since my dependent variable contains many

zeroes. A natural alternative is a generalized linear model for count data. Column 4 reports

estimates for a Poisson regression. This model also yields a similar magnitude of 8.8 percent

increase9 in car fatalities due to smoke shocks.

Finally, as a placebo check, I estimate the impact of the next day smoke measures on current

fatal collisions in column 5. If there were other unobserved determinants of fatal accidents

correlated with the timing and location of smoke plumes, I would also expect these factors

to be potentially correlated with smoke plumes on the day after. Thus, no significant smoke

impacts on the following day detected in column 5 help to support my key causal identification

assumptions.

5 Conclusions

Wildfires are devastative natural phenomena that frequently destroy properties and threaten

those living in the areas they burn. The resultant wildfire smoke plumes carry many harmful

air pollutants that can drift great distances, negatively affecting communities far from the

fires. In this paper, I examine daily variation in wildfire smoke and its intensity across the

contiguous Western United States and find that forest fire smoke exposure causes statistically

and economically meaningful increases in fatal motor vehicle crashes.

My results are able to shed more light on the mechanisms at play and provide a few key

8This number is calculated as follows: 0.0204/0.4121*100% = 5%
9This number is computed based on the standard interpretation of coefficients from the Poisson regression:

(e0.0840 − 1) ∗ 100% = 8.8%.
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insights. I find increases in fatal accidents even in the presence of low intensity smoke plumes.

This suggests that cognitive impairment plays a key role, since these are days in which it is less

likely that drivers would notice the pollution and modify their driving behaviour. Further, my

results suggest that the greatest impact on road safety is contemporaneous – on the day of smoke

exposure – and does not have longer-lasting effects. Additionally, my research suggests drivers

under the influence may be the most susceptible to tragic mistakes, especially during the heavy

smoke episodes. Finally, these impacts are heavily concentrated in major metropolitan counties

which, perhaps, is surprising given that many likely associate fires and the negative impacts of

fires with more rural areas.

The estimated marginal impact of a smoke day stands at a 7.1 percent, while a typical county

in my analysis sample is subject to 0.1231 smoke exposure on a given day, resulting into almost

0.9 percent total increase in lethal accidents. Given the average number of fatalities in the entire

Unites States over the period of 2011 through 2015 is 33,476 annually or roughly 91.7 each day,

the overall effect of forest fire smoke constitutes 0.8 more fatalities daily or 292 annually across

the U.S. To put this in perspective using the recent total cost from fatalities of $412 billion per

year (Blincoe et al., 2023), the comprehensive impact of wildfire smoke on driving incidents

aggregates to $3.7 billion in additional losses each calendar year.

One promising area of future research is to extend the geographic scope of this article by

considering the entire United States. This enables more representative estimates of smoke and

the respective fatality costs. Next, a comprehensive air pollution data would improve ground-

based monitor measures that currently cover less than half of all observations in the analysis

sample. Finally, future work could incorporate traffic volume data. Such dataset would allow to

distinguish between contrasting mechanisms outlined in this paper. A traffic reduction during

intense smoke days could indicate avoidance behaviour among road users.
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Figure 1: Annual Number of Smoke Days per County

Notes: This figure represents the annual average number of smoke days of any intensity by county across the Western United States over
the period 2011-2015. Smoke counts are calculated based on the Hazard Mapping System smoke plumes data.
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Table 1: Summary Statistics

Observations Mean SD Min Max

Daily smoke: any 914481 0.1231 0.32 0.00 1.00
Daily smoke: low 914481 0.0939 0.27 0.00 1.00
Daily smoke: medium 914481 0.0225 0.13 0.00 1.00
Daily smoke: heavy 914481 0.0068 0.07 0.00 1.00
Daily temperature (°C) 914481 16.4232 9.02 -27.65 39.09
Number of crashes 914481 0.0385 0.22 0.00 8.00
Number of vehicles involved 914481 0.0594 0.38 0.00 20.00
Number of persons involved 914481 0.0912 0.66 0.00 93.00
Number of DUI involved 914481 0.0123 0.12 0.00 5.00
Notes: The observation unit is a county-by-day. All smoke-related variables calculated as the fraction of area a county being
covered with smoke plumes on a day. All crash-related variables calculated as a number of relevant fatal crashes on a day.
DUI = driving under the influence.
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Table 2: Main Results

(1) (2) (3) (4)
AQI and Smoke Main Model Daily Lag Weekly Lag

Panel A: Any smoke

Smoke 12.2191*** 0.0030*** 0.0025*** 0.0025***
(0.5388) (0.0009) (0.0009) (0.0010)

Smoke lag 0.0011 0.0003
(0.0010) (0.0002)

Panel B: Smoke intensities

Smoke: low 8.1141*** 0.0030*** 0.0026*** 0.0025**
(0.3689) (0.0010) (0.0010) (0.0010)

Smoke: medium 18.6617*** 0.0025 0.0023 0.0021
(0.8823) (0.0016) (0.0018) (0.0018)

Smoke: heavy 38.0199*** 0.0050* 0.0041 0.0045
(2.7098) (0.0028) (0.0028) (0.0029)

Smoke: low, lag 0.0015 0.0005
(0.0011) (0.0003)

Smoke: medium, lag -0.0020 -0.0003
(0.0020) (0.0005)

Smoke: heavy, lag 0.0044 0.0005
(0.0036) (0.0008)

Observations 352,898 914,481 914,481 914,481
Mean of outcome 44.1002 0.0424 0.0424 0.0424
FE: County X X X X
FE: Date X X X X
Notes: The dependent variable is AQI index in column 1 and a number of crashes on the reference day in other columns.
The main independent variable is a fraction of county being covered with any smoke (Panel A) or respective wildfire smoke
intensity (Panel B) on a day. All columns contain weather controls and include county together with day fixed effects.
Column 3 and 4 additionally control for a number of crashes on the previous day and week, respectively. Standard errors are
clustered at the county level. Significance codes: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3: Other Variables

(1) (2) (3) (4)
Fatal Crashes Vehicles Involved Persons Involved Drunk Drivers

Panel A: Any smoke

Smoke 0.0026*** 0.0045*** 0.0055** 0.0011**
(0.0008) (0.0014) (0.0023) (0.0005)

Panel B: Smoke intensities

Smoke: low 0.0025*** 0.0047*** 0.0057** 0.0009*
(0.0008) (0.0015) (0.0025) (0.0005)

Smoke: medium 0.0025* 0.0030 0.0039 0.0013
(0.0014) (0.0023) (0.0043) (0.0010)

Smoke: heavy 0.0052** 0.0060 0.0086 0.0028*
(0.0025) (0.0041) (0.0070) (0.0015)

Observations 914,481 914,481 914,481 914,481
Mean of outcome 0.0385 0.0594 0.0912 0.0123
Notes: Column name indicates the independent variable used. The main independent variable is a fraction of county being
covered with any smoke (Panel A) or respective wildfire smoke intensity (Panel B) on a day. All columns contain weather
controls and include county together with day fixed effects. Standard errors are clustered at the county level. Significance
codes: * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4: Heterogeneous Effects

(1) (2) (3) (4) (5)
Metropolitan

Area
Non-Metro:
Urban Area

Non-Metro:
Rural Area

Weekdays Weekends

Panel A: Any smoke

Smoke 0.0086*** 0.0003 0.0008 0.0025** 0.0041**
(0.0023) (0.0009) (0.0008) (0.0010) (0.0019)

Panel B: Smoke intensities

Smoke: low 0.0088*** -0.0001 0.0003 0.0021** 0.0046**
(0.0024) (0.0011) (0.0008) (0.0010) (0.0021)

Smoke: medium 0.0057 0.0011 0.0032* 0.0042** -0.0013
(0.0043) (0.0020) (0.0019) (0.0021) (0.0035)

Smoke: heavy 0.0144* 0.0021 -0.0007 0.0025 0.0124**
(0.0083) (0.0032) (0.0029) (0.0033) (0.0056)

Observations 298,439 423,014 193,028 652,630 261,851
Mean of outcome 0.0990 0.0189 0.0062 0.0377 0.0540
Notes: Column name indicates the subset of data used. The dependent variable used is a number of crashes on the reference
day. The main independent variable is a fraction of county being covered with any smoke (Panel A) or respective wildfire
smoke intensity (Panel B) on a day. All columns contain weather controls and include county together with day fixed effects.
Standard errors are clustered at the county level. Significance codes: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 5: Robustness Checks

(1) (2) (3) (4) (5)
Main Model Fatality Rate

(per 6M cars)
Population

Weights
Poisson

Regression
Future Smoke

Panel A: Any smoke

Smoke 0.0030*** 0.0028** 0.0204* 0.0840*** 0.0026***
(0.0009) (0.0014) (0.0109) (0.0220) (0.0009)

Smoke: next day 0.0010
(0.0010)

Panel B: Smoke intensities

Smoke: low 0.0030*** 0.0029* 0.0183** 0.0742*** 0.0026***
(0.0010) (0.0015) (0.0086) (0.0243) (0.0010)

Smoke: medium 0.0025 0.0005 0.0229 0.0953* 0.0015
(0.0016) (0.0029) (0.0218) (0.0493) (0.0018)

Smoke: heavy 0.0050* 0.0096* 0.0475 0.2028** 0.0037
(0.0028) (0.0056) (0.0390) (0.0890) (0.0031)

Smoke: low, next day 0.0007
(0.0011)

Smoke: medium, next day 0.0027
(0.0019)

Smoke: heavy, next day 0.0014
(0.0033)

Observations 914,481 914,481 914,481 914,481 914,481
Mean of outcome 0.0424 0.0406 0.4121 0.0424 0.0424
Notes: The dependent variable used in all models but column 2 is a number of crashes on the reference day. The dependent
variable used in column 2 is a fatality crash rate per 6 million of vehicles registered in the state. The main independent
variable is a fraction of county being covered with any smoke (Panel A) or respective wildfire smoke intensity (Panel B) on
a day. All columns contain weather controls and include county together with day fixed effects. Column 3 includes county
population weights. Column 4 is estimated using Poisson regression. Column 5 includes a fraction of area affected by
corresponding smoke on the next day. Standard errors are clustered at the county level. Significance codes: * p < 0.1, ** p
< 0.05, *** p < 0.01.

20


	Introduction
	Data Sources
	Motor Vehicle Fatalities Data
	Smoke Plumes and Air Quality Data
	Other Data

	Research Methodology
	Forest Fire Smoke Exposure
	Empirical Design

	Results
	Main Findings
	Heterogeneous Results
	Robustness of Results

	Conclusions

